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Forecasting Methods 
 
 

� What is forecasting ? 
� Why is forecasting important ? 
� How can we evaluate a future demand ? 
� How do we make mistakes ? 
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1. Framework of planning decisions 
Let us first remember where the inventory control decisions may take place. 
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Here are the successive decision steps by which a company finally manufactures a product. 
These steps have been analyzed in details in the previous chapters. Roughly, the strategic 
planning defines which products to manufacture, how and where. The aggregate planning 
looks at the intermediate term and selects the best policy to cope with the fluctuation of the 
global demand. Finally, the master production schedule defines the production activities in 
shorter terms (a few weeks) and per products.  
Each of these planning steps requires some kind of forecasting which differs by the term 
which is considered and the product scope.  
The business forecasting considers the long term. It focuses on product lines. The aggregate 
forecasting considers the aggregated (in terms of products) demand for each of the 12 -24 
coming months. The item forecasting is an estimation of the demand for each item in the 
coming weeks. The need for spares is also required for the MRP. 

� Demand Forecasting 
The independent demand is driven by the market. You do not know exactly how many cars will 
be sold in the next period. Here you need some forecasting. 
The dependent demand is driven by the demand of another product. You do not know how 
many wheels you need, but it is always 5 times the number of cars. 
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2. Forecasting 
Here are listed the main features of forecasting. 

2.1 Characteristics 
First, a causal relationship is needed. If what happens is purely random and does not depend 
on anything, you cannot predict what will happen.  
On the other hand, if you observed some correlations between some variables, you could use 
these correlations to make some forecasts. 

• based on causal relationship 
If a student got A grades only during his/her first two years, the probability that he/she fails an 
exam is smaller than the average.  
If the weather gets hot, the ice cream sales will increase. 

Forecasting 
Previous data  �   Future data 

 

• usually wrong 
The sentence: "Forecasting is difficult, especially about the future" is clear. 

• requires more than one number 
The forecast is the value which is looked for, but some idea about its probability distribution is 
necessary. 

• aggregate is better 
If you have to forecast some demand, you might find that it has the distribution of Gauss 
(normal) with average µ and standard deviation σ. The coefficient of variation of the prediction 
is thus σ/µ. If you have to predict the sum of two such demands, you will find a coefficient of 
variation 0.71 σ/µ, where 0.71 = sqrt(2)/2. The sum of three such demands has a coefficient of 
variation 0.58 σ/µ, etc. 

• long horizon ���� large errors 
So many things can happen. 

• use different approaches 
You gain confidence in your forecast if you can find it by different ways. 

• use any other known information 
Any additional information must be incorporated. You cannot estimate the future demand 
accurately if you do not take into account facts which influence the demand. Two examples: 

- an advertising or promotion campaign has been launched; 
- a new product which replaces the old one is now available. 
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2.2 Type of Forecasts: 
Forecasts can be obtained in different ways. 

• qualitative 
These approaches are based on judgments and opinions. Here are four examples. 
1. Ask the guy in contact with the customers. Compile the results level by level.  
2. Ask a panel of people from a variety of positions. Derive the forecasts and submit again. An 
example is the Delphi method used by the Rand Corporation in the 1950s. 
3. Perform a customer survey (questionnaire or phone calls). 
4. Look how similar products were sold. For example, the demand for CDs and for CD players 
are correlated. Washing machine and dryers are also related. 

• time series analysis 
What we will analyze in details. The idea is that the evolution in the past will continue into the 
future.  

Time series: stationary 
   trend-based 
   seasonal 

Different time series will be considered: stationary, trend-based and seasonal. They differ by 
the shape of the line which best fits the observed data. 

Methods : moving average 
   regression 
   exponential smoothing 

The methods which can be used are (linear) regressions, moving averages and exponential 
smoothings. They differ by the importance they give to the data and by their complexity. 

• causal relationship 
Here one tries to verify whether there is some causal relationship between some variables and 
the demand. If this is the case and if the variable is known in advance, it can be used to make 
some forecast. For example, there is a correlation between the number of building permits 
which are delivered and the demand for wall paper. 

• simulation 
Here a dynamic model which incorporates all the relevant variables is designed and 
programmed. This model is supposed to incorporate all the internal and external important 
variables. The model is then used to test different alternatives such as what happens: if the 
price is reduced by so much or if an advertisement campaign is started? 

Notations 
Dt  Observed demand in period t 
Ft t, +τ Forecast made at t for period t+τ 
F Ft t t= −1,  Forecast made at t-1 for period t 
e F Dt t t= −  Forecast error in period t 

These are the notations that we will use. 
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3. Time series methods 
Let us first look at some examples 

3.1 Examples 
Look at the demand in the past, how would you characterize these values ? 
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All the numbers seem distributed between 1 and 2, that is around 1,5 with some variation. We 
could say that the demand at time t, D(t), should be given by a constant (here, 1,5) plus some 
error term varying in [-0.5 ,  +0.5].  
The model in this case is D(t) = a + ε(t) with ε(t) uniformly distributed in [-0.5 ,  +0.5] and a 
constant. In the chart below, as in all the next ones, the chart axis (days, demand) will be 
omitted for space reasons. 
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Here the demand seems to indicate a trend. It increases like a straight line with some variation 
around it. The model in this case is D(t) = a + bt + ε(t) where (a + bt) is the equation of the line 
and ε(t) is the error term. 
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Examples 
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Here the demand seems to indicate a quadratic growth. The model in this case is D(t) = a + bt 
+ct2 + ε(t) where ε(t) is the error term.  
An exponential model D(t) = a ebt  + ε(t)  could be correct too. In this case, we find the relation 
(neglecting the error term) D(t+1) = eb D(t), that is the demand is multiplied by some constant 
at each time period. 

0

0,5

1

1,5

2

2,5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The seasonal model is characterized by some periodic term. For this example, the model D(t) 
= a c(t mod T) + ε(t) correspond to a stationary time series with a seasonal coefficient c(t mod 
T). The coefficient is seasonal since c(t mod T) = c(t+T mod T) = c(t+2T mod T). For example, 
if T is one week and t is a precise day, then there is a seasonal coefficient for each day. For 
example, c(Monday)=2.0 means that the demand on Mondays is always twice the average. 
The seasonal coefficients are chosen so that they sum up to the length of the period T. 
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3.2 Principles 
Forecasts based on time series analysis are based on a 3-step procedure. 

1. Select the model 
Question: 

Is it reasonable to assume a constant, an 
increasing, a decreasing or a seasonal demand ? 

Answer: 
A mathematical model (a curve): 
D(t) = (a + bt +dt2 ) c(t mod T) + εεεε(t) 

The answer to this question depends of the product and of the market. It is reasonable to 
assume a constant demand pattern if several conditions are satisfied: old classical product, 
saturated market, no new competitor or competitor’s move, etc. 
Here below we will review the stationary, the trend-based and the seasonal models. 

2. Parametrize the model 
Question: 

How to find values for the parameters: a, b, ... ? 
Answer: 

Use a method which tunes the parameters in 
order to fit the curve with the observations 

Here below different methods will be reviewed. They differ by their complexity (simple or not) 
and by their sensitivity to the data. We will also give some hints for the tuning of the 
parameters of these methods. 
At this point, we have a mathematical curve which fits the past data (quite well). 

3. Make a forecast and estimate confidence 
Forecast = model extrapolated in the future 
Question: 

How confident are we in this forecast ? 
Answer: 

If the errors made with this model in the past are 
small, the error we will make will be small too. 

We will describe a technique for building a confidence interval around the forecast. 
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4 Stationary time series 
Here, we assume that the underlying model is stationary. 

Assume : D at t= + ε  
where  : a is an unknown constant; 
   εt  is a random var: E[εt]=0, StDev[εt]=σ  
The random variable D(t) has thus a mean equal to a and a standard deviation equal to σ. This 
is an assumption. In reality we do not know whether the demand is distributed like this. We just 
think here, it is constant. The problem then is to determine the constant a. 
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The moving average assumes that the constant is given by the average of the last N values. 
Indeed, this average is a random variable with mean a and standard deviation σ/sqrt(N). 
Larger N will thus lead to more stable (and thus also less dynamic) estimation. 

4.1 Moving Average:  F
N
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Stationary time series 
The moving average is moving because we look each time at the last N values. All these 
values have the same importance. For example, D(t-N) and D(t-1) have equal importance in 
the computation of the moving average. We could find this inappropriate and want to give 
higher weights to more recent data. This leads to the weighted moving average:  

4.2 Weighted Average:F w Dt t i t i
i

N
= � − − − −

=

−
1 1

0

1
 

The weights should of course sum up to one. Here is an example. 

... w(t-4) w(t-3) w(t-2) w(t-1) 
0.0 0.1 0.2 0.3 0.4 

Here are two other examples to introduce the exponential smoothing. Assume we look at all 
the past data and give them decreasing weights as in this table. 

w(t-k) ... w(t-4) w(t-3) w(t-2) w(t-1) 
(1/2)k ... 1/16 1/8 1/4 1/2 
9 10-k  0.0009 0.009 0.09 0.9 

 

4.3 Exp. Smoothing: F Dt
i

t i
i

= −� − −
=

∞
α α( )1 1

0
 

The two above examples correspond to α equal to 0.5 and to 0.9 respectively. Expressing F(t) 
in terms of F(t-1) leads to the following recursive expression: 

F D F F D Ft t t t t t= + − = + −− − − − −α α α1 1 1 1 11( ) ( ) 
This can be seen on the table of weights too. Assume you computed at time (t-2), the forecast 
F(t-1) using the last row of weights. The weight was 0.9 for D(t-2), 0.09 for D(t-3), etc. Then, at 
time (t-1), you got D(t-1), the real demand. You then want to compute your next forecast F(t). 
This is similar to adding a column at the right of the table. You will multiply all the previous 
data by 1/10 so that, for example, the weight for D(t-2) changes from 0.9 to 0.09 and you will 
give the weight 0.9 to D(t-1). This is your next forecast F(t). 
On the previous chart, you see the curves corresponding to the forecasts obtained using the 
exponential smoothing method with a factor α equal to 0.25 and to 0.1. 
It is very important to understand the equation F(t) = α D(t-1) + (1-α) F(t-1) as follows. 
A forecast F(t-1) has been made at time (t-2). At time (t-1), some observation D(t-1) has been 
performed. You decide then that your next forecast F(t) will be between what you had 
forecast, F(t-1), and what you observed, D(t-1). If α equals 0, then you never modify your 
forecast. If α equals 1, then you set your forecast equal to what you just observed D(t-1). For 
0<α<1, your forecast is a compromise between F(t-1) and D(t-1).  
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4.4 Comparison between MA and ES 
 

Exponential Smoothing
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data

es(0.25); f(1)= D(1)

es(0.1); f(1)= D(1)

es(0.25); f(1)= 1

 

 
 

Similarities 
1. assume stationary process 
2. single method parameter 

N for the MA and α for the exponential smoothing. 

3. lag behind trend 
If there is a general trend, both approach will follow but with some delay. 

Differences 
By their definition, the two approaches do not incorporate the same amount of data. 

1. number of data taken into account 
Although ES takes all the data into account, its recursive formulation allows the new forecast 
to be determined on the basis of the last forecast and last observation only. 

2. computation and memory 
 

Variables 
 for the MA: choose N 
A large value for N will characterize a stable forecast. This is a quality if the process is stable, 
it isn't if the process undergoes some changes. 

 for the ES: choose α 
A small value for α will characterize a stable forecast (we give very little importance to the new 
observation D(t)). Again, this is appropriate if the process is stable and it isn't if the process 
undergoes some changes. 
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5 Trend-based time series 
Here, we assume that the underlying model shows a linear trend. 

Assume : D a btt t= + + ε  
where  : a, b are unknown; E[εt]=0, StDev[εt]=σ  
This is again an assumption. In reality we do not know whether the demand roughly follows a 
line or not. The problem here is to determine the constants a and b. 
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You see that the data roughly follows a straight line. You could ask yourself what would 
happen if you use the MA or the ES to estimate the forecast? (You will lag behind.) 

Linear Regression : Y t a bt( ) = +  
The regression analysis aims at fitting a straight line in the set of points. Since there are 
different ways of fitting the curve, an objective must be selected. 

Regression
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5.1 Linear Regression 
The classical approach consists in minimizing the sum of the squared deviations. 

Objective:  min [ ( )]
,a b

t
t

n
D a bt

=
� − +

1

2 

In order to reach this objective, the model parameters a and b must be found.  

� a = ...    b = ... 
 
We follow therefore the general procedure by which we compute the derivatives with respect 
to the variables (here a and b). We then set these derivatives to zero and solve the equations 
to find a and b. Theoretically, we should still verify that the extremum we obtain is really a 
minimum and not a maximum. The sign of the second derivative would tell us. 

In order to solve :  min ( , )
,a b

f a b   

 

You must set the :  
∂

∂
∂

∂
f a b

a
f a b

b
( , )

,
( , )= =0 0  

Here is the equation we obtain when deriving with respect to a. 

2 1 0 0

0
1

2
1

1 1

1 1 1

[ ( )]( ) [ ]D a bt D a bt

D a n b t a b
n

n
D

t
t

n
t

t

n

t
t

n

t

n
t

t

n
= =

= = =

� − + − = � � − − =

� � − − � = � = − + + �

 

Here is the equation we obtain when deriving with respect to b. 

2 0 0

1
2

1 2 1
6

6
1 2 1

3
2 1

1 1

2

1

1

[ ( )]( ) [ ]

( ) ( )( )

( )( )

D a bt t tD at bt
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b
n n n

b
n n n

tD
n

a

t
t

n
t

t

n

t
t

n

t
t

n

= =

=

=

� − + − = � −� + + =

� � = + + + +

� =
+ +

� −
+  

Numerically, we obtain the following equations: a=-10.500 b + 1.501;  
       b=  0.133 - 0.0732 a; 
which can be solved to give a = 0.43 and b=0.10. Looking at the chart on the previous page, 
do you agree with these values ? 
Note that similarly to the moving average method, the linear regression analysis implicitly 
gives the same weights to all the data. 
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5.2 Double Exp. Smoothing (Holt) 
Again, by using an exponential smoothing, decreasing weights will be given to the data. 
The goal here is also to determine the model parameters a and b where a is the intercept at 
time 0 and b the slope. Here however, we will use the parameters a(t-1) and b(t-1) where a(t-
1) is the intercept at time (t-1) and b(t-1) is the estimated slope for the interval [t-1,t]. Note (but 
incidentally) that both model parameters are computed at time (t-1). 

Determine :     at−1 and bt−1 
 

Such that :    F a bt t t= +− −1 1 
Since a(t-1) is the intercept at time (t-1), the slope has to be multiplied by 1 in order to obtain 
the forecast for time t. 

tt-1

a t-1

b t-1

F t

∗

 
 
Here we show how a new forecast is derived on the basis of the previous forecast and of the 
observed data. On the basis of a(t-1) and of b(t-1), the forecast F(t) has been computed at 
time (t-1). Now we are at time t. We observed D(t) and we must compute a(t) and b(t) so that 
a new forecast F(t+1) can be determined. 

tt-1

a t

a t-1

b t-1

D t

F t

∗

∗

tt-1

b t

b t-1

D t

F t

∗

∗
∗

a t

a t-1

 
We choose to set a(t) between the previous forecast F(t) and the observed data D(t). That is, 
a(t) is a compromise between D(t) and F(t)=a(t-1)+b(t-1). 
For the slope, we choose a value between the previous slope, b(t-1), and the slope of the line 
passing by a(t-1) and a(t). That is, b(t) is a compromise between b(t-1) and (a(t)-a(t-1)). Both 
compromises are ruled by smoothing factors: α and β. 

  
a D a b

b a a b
t t t t

t t t t

= + − +
= − + −

− −

− −

α α
β β

( ) ( )
( ) ( )

1
1

1 1

1 1
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Double Exponential Smoothing (Holt) 
 
Let us look at the forecast we obtain with different smoothing factors and different initial 
conditions. 

Forecast curve obtained with α = 0.2 β = 0.1 
      a0 = 0.5 b0 = 0.0 

Holt's method
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With these values, we obtained b(0)=0; b(10)=0.050; b(20)=0.091 while the model used to 
generate the dataa had a slope equal to 0.1. Here below you see the values of the model 
parameters a and b as the forecasts evolved. 

Curves for a and b obtained with α= 0.2 β = 0.1 
       a0 = 0.5 b0 = 0.0 

Holt's method
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Double Exponential Smoothing (Holt) 
Here you see the same curves with a different initialization. 

Curves for a and b obtained with α= 0.2 β = 0.1 
       a0 = 0.5 b0 = 0.2 

Holt's method
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The following values were observed: b(0)=0.2; b(10)=0.141 and b(20)=0.102 for a model 
using a slope equal to 0.1. To avoid this initialization problem, a solution consists in using a 
linear regression on the first data to initialize the model parameters a and b. 

Making forecasts :  
  Assume the forecasts are along the line 
For example, with the LR, the forecast F(t,t+x) is given by the curve Y(t+x). With the double 
exponential smoothing, the forecast is F(t,t+x)= a(t) + b(t)x. 

5.3 Comparison ( Lin. Regression - 2ES) 
 

similarity :  adequate for series with trends 
 

differences : 
 LR:  - lots of work 
   - equal weight for all the data 
   - (a weighted version is possible) 
 Double ES (Holt): 
   - easy to compute 
   - decreasing (possibly dynamic) weights 
   - difficult to initialize 
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6. Seasonal Time Series 
Here, we assume that the underlying model is seasonal. 

Assume : D a bt ct t T t= + +( ) mod ε  
where  : a, b and c0, ..., cT-1 are unknown;  
   c1.+ ... + cT-1 + c0 = T 
   E[εt]=0,  StDev[εt]=σ  
Note first, that the previous model can be derived from this more general one. By choosing 
T=1 and c0 = 1, we get the trend-based series (a + b t) + ε(t). By further setting b=0, we obtain 
the stationary model: a + ε(t). 
The seasonal model is characterized by the fact that each season has its own seasonal 
coefficient. For example, if T is one week and t is a precise day, then there is a seasonal 
coefficient for each day. For example, c(Monday)=1.2 means that the demand on Mondays is 
always 20 percent larger than the forecast (a+bt) determined without seasonal variation. Here 
is an example of a set of seasonal coefficients for a whole week (T=6). 

Example: Mon. Tues. Wed. Thu. Fri. Sat. 
 c0 c1 c2 c3 c4 c5 
 1.2 1.0 0.6 0.9 1.3 1.0 
The seasonal coefficients are chosen so that they sum up to the length of the period T. By 
doing so, the values without seasonal coefficients, a + bt, correspond to the average. In the 
above example, Monday and Friday are 20 and 30 percent above the average (also called the 
deseasonalized values) and Wednesday and Thursday are 40 and 10 percent below this 
average. 
Note that we assume a multiplicative model, that is, the seasonal coefficient multiplies the 
normal forecast (a+bt). In an additive model, the seasonal coefficient would just be added to 
the normal forecast, that is, D(t)= (a+bt) + c(t mod T). In an additive model, the seasonal 
coefficients should sum up to zero. 
The problem here is to determine the constants a, b and the seasonal coefficients c. 
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6.1 CMA method 
Two different methods will be described. The first method is called the CMA method. CMA 
stands for centered moving average. In reality this method provides the seasonal coefficients 
only. Afterwards, the trends (the parameters a and b) should be determined by one of the 
previous methods (linear regression or double exponential smoothing). The second method is 
called triple exponential smoothing or method of Winters. 
Here are the successive steps of the CMA method.  

CMA Method: 5 steps 
1. examine data and determine cycle length (T) 
2. determine the seasonal coefficients 
3. extract seasonal coefficients from data (deseasonalize) 
4. determine the trends (by another method) 
5. make (deseasonalized) forecasts 
6. introduce seasonal coefficients 

First the cycle length must be determined. This is the model parameter T. Note that a cycle 
has, by definition of a seasonal model, a fixed length. Most often this cycle results from the 
nature of the product which is sold. On a chart, the only way to recognize a cycle consists in 
checking whether the data follows the same behavior. Anyway, if you choose a wrong value 
for the cycle length, you will realize it in step 2. 

1. Determine cycle length: T = 6 
This means that T different seasonal coefficients are needed: c0, ..., cT-1. The step 2 aims at 
evaluating these coefficients. 

2. determine the seasonal coefficients 
Now, let us organize the data in a table whose length is the cycle length. 

Periods (t)  Values (Dt)  
1 7 13 19  2.93 6.36 10.03 13.11 
2 8 14 20  4.19 7.51 11.46 14.56 
3 9 15   3.27 5.43 7.93  
4 10 16   2.82 3.76 4.73  
5 11 17   3.13 4.30 4.84  
6 12 18   4.62 7.02 8.45  

Compute then the centered moving average (CMA) for each time t. 

CMA
D

D D D D D
D

t
t

t t t t t
t( ) ( )6

1
6 2 2

3
2 1 1 2

3= + + + + + +−
− − + +

+

The goal is here double. By summing over a set of values, we first hope to get rid of the errors 
ε(t). This principle was already used in the MA method. Second, by summing over exactly a 
cycle (that is, T values), we sum approximately equal (a+bt) values with each a different 
seasonal coefficient. But this sum is by assumption equal to a constant (T). Dividing by T 
leads thus to the average value at time t:, that is, (a + b t).  
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Seasonal times series : CMA 
Here is the kind of expression we used. 

CMA T
T

a bt c a btt t T t
cycle

( ) ( ) ( )mod≈ + +� ≈ +1 ε  

The CMA values can thus be seen as rough estimates of the real demand without seasonal 
variation. Note that these moving averages must be centered to reduce bias. 
Practically, the centered mean average for the first Thursday is obtained by adding to the 
demand of this day, the demand of the previous and next days up to a cycle length. 

Values Dt  CMA(6)t 
2.93 6.36 10.03 13.11  * 5.06 7.50 * 
4.19 7.51 11.46 14.56  * 5.23 7.62 * 
3.27 5.43 7.93   * 5.53 7.79  
2.82 3.76 4.73   3.78 6.04 8.16  
3.13 4.30 4.84   4.34 6.67 8.68  
4.62 7.02 8.45   4.80 7.21 *  
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Since, Dt ≈ (a + b t ) * ct and CMAt ≈ (a + b t ), the ratio between the observation and CMA 
gives therefore an idea of the seasonal coefficient ct. In fact, we can compute this ratio for 
each period. In our example, we will obtain values for c4, c10, c16. However, all these values 
correspond to the season number 4 (Thursday, for example). The question is then, which 
value should we choose for the seasonal coefficient corresponding to Thursday. The answer 
is: the normalized average. We take the average over all the values we have: 1/3 ( c4+ c10+ 
c16). These are the Avg(t) values below. 
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Seasonal times series : CMA 
 

Dt/CMA(6)t ���� Avgt ���� ct  
 1.26 1.34  1.30  1.29 c1 
 1.44 1.50  1.47  1.46 c2 
 0.98 1.02  1.00  0.99 c3 
0.75 0.62 0.58  0.65  0.65 c4 
0.72 0.64 0.56  0.64  0.64 c5 
0.96 0.97   0.97  0.97 c0 
    6.03  6.00  

We still normalize these average (here to T=6) since we want the seasonal coefficient to sum 
up to the cycle length. To understand the need for this last normalization, assume you have a 
cycle of length 2 and you found (avg(0)=1.8 and avg(1)=0.6). 
Here are the formulas you use to compute these seasonal coefficients. 

Avg
k

D CMA

c Avg T Avg

t t i T t i T
i

k

t t i
i

T

=

=
�

�
�

�

�
	

+ +
=

−

=

−

�

�

1

0

1

0

1

* *

* /

/ (T)

 

Now we have estimated all the seasonal coefficients. The next step consists in extracting 
these coefficients from the observed data in order to get deseasonalized observations. Each 
observation corresponds to a season and is thus divided by the corresponding seasonal 
coefficient. 
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Seasonal times series : CMA 
Now we proceed with the final steps of the method. 

3. Deseasonalize the data 
Since we think that Dt ≈ (a + b t ) * ct, by dividing by ct, we should obtain the term (a + b t), 
that is, a line of deseasonalized observations. Here are the values we obtain.  
 

Deseasonalized Values Dt/ct   
2.27 4.93 7.78 10.16 
2.87 5.14 7.85 9.97 
3.27 5.43 7.93  
4.34 5.78 7.28  
4.89 6.72 7.56  
4.76 7.24 8.71  
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Deseasoned

4. Compute the trends: a and b 
The trend can be computed by a linear regression or by a double exponential smoothing. 

5. Make forecast:   DF21 10 4= .  
We determine then a new deseasonalized forecast (a+bt) and then, the seasonal coefficient is 
introduced. 

6. introduce seasonal coefficient: 
      F c21 310 4 10 3= =. * .  
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6.2 Winters' Method 
The method here consists in a triple exponential smoothing by which all the model parameters 
(a, b and the c's) are updated when a new observation is obtained. We also assume that the 
cycle length has been previously determined. The model parameters "a" and "b" are updated 
as with the double exponential smoothing, except that the observation is first deseasonalized. 
The third equation updates the corresponding seasonal coefficient. There again, a 
compromise is made between the previous value of the seasonal coefficient and the observed 
coefficient. 

1) a D c a bt t t T t t= + − +− −α α( / ) ( )( )mod 1 1 1  
  as in Holt's method, except D D ct t t T→ ( / )mod  
 

2) b a a bt t t t= − + −− −β β( ) ( )1 11  
  as in Holt's method  
 

3) c D a ct T t t t Tmod mod( / ) ( )= + −γ γ1  
The forecast is determined as usually. 

Forecast : F a b ct t t t t T, mod( )+ += +τ ττ  
First, the trends is used to determine the deseasonalized forecast (a + b t). Then, the 
adequate seasonal coefficient is introduced. 
Here below is a plot of the forecast made daily using the Winter's method. We can observe 
that the trend is adequate but that the seasonal coefficients are not yet adequate.  
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Comparison: CMA - 3ES 
The comments on the comparison LR - 2ES apply here similarly and are left as an exercise. 
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7. Evaluation of Forecast 
Here we try to determine whether the forecast is good, that is accurate and not biased. 
There are two usual ways of measuring the accuracy of the forecasts. 

� Mean Absolute Deviation 
Here we compute the average absolute deviation. 

 MAD = 
1

1n
et

t

n
| |

=
�  

The following result is extremely useful since it allows to determine the variation of the error 
process from the measure of the MAD. 

if  et  is N(0, σ), then  σ ≈ 1.25 MAD 
For example, if we measure an MAD value of 8 units, we could derive that the error process 
has a standard deviation σ equal to 10 units. The probability that the demand exceeds the 
forecast by 20 units is then 0.023. 

 Example 
  Ft  = 120 units 
  MAD = 8  units  
 � σ  = 10  units 
We can thus argue that the forecast is correct (equal to 120) up to an error term which is 
distributed as a normal with mean 0 and standard deviation σ. We can then derive the 
probability that the demand falls within some confidence interval. 

  Prob[Ft - 2 σ < Dt < Ft - 2 σ ] = 0.95 
 � 95 percent confidence interval = [100 - 140] 
 

Valid method if the errors and the 
previsions are made in the same way 

This means that if the errors are mesasured by comparing the real demand and the forecasts 
made two days before, then we can build a confidence interval for a forecast made today for 
the demand in two days. 
 
Note that the MAD is sometimes computed by using an exponential smoothing process. 

� Tracking Signal 
If your forecasting method is correct you should overestimate and underestimate the demand 
rather regularly. If your method is biased, then you will repetitively under (or over-) estimate 
the demand. The tracking signal aims at checking whether there is some bias or not.  

TSE = e MADt
t
� /  

It simply consists in summing the error over time. Theoretically, if there is no bias, this sum 
should remain close to zero. The division by the MAD aims at measuring the distance from the 
mean (here, 0) in terms of MAD. We can plot the tracking signal over time for checking 
purpose. We could also decide the limits it should not exceed. Typical values are a few 
standard deviations. 
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8. Other Methods 
 
Causal Relationship: 
 

 Multiple Regression Analysis 
The idea is that your forecast could be determined by several variables (x, y and z). If we 
know them in advance we could make some forecasts. The coefficients (X, Y and Z) are 
determined by a regression on the past data. 

F Xx Yy Zzt t t t= + + +µ  
 

Focus Forecasting (B. Smith) 
The principle here is very intuitive. Ask the salesman how he derives his forecast (a rule). 
Check whether it would have worked on the past data. If it would, then use it for the 
subsequent forecasts. 

� Try a rule on the past data. 
 If it worked well, then it will still work ... 
 
 
 

9. Which method to use ? 
 

depends on:  • observation 
If you have few observations, it will be difficult to define a detailed model. A linear regression 
for computing the trends requires at least 10 observations to be valid. If you have some 
seasonal variation, 3 or 4 cycles of observations are necessary for your model to start being 
effective.  

depends on:  • time horizon 
The time horizon is also important. Do you want to make a forecast for tomorrow, next month, 
next year or the next 5 years ? How does the demand process vary with respect to your time 
horizon ? Linear regressions (and causal relationship methods) seem for example more 
robust for long term forecast. In any case, the observations on which you base your forecast is 
a direct indicator of the horizon range for which your forecast is valid. 

depends on:  • the MAD observed 
If sufficient data are available, you could use the 3 fourths of your observations to set the 
parameters of your model and then, use the last fourth of observations to compare the 
forecasts of your model with what really happened. Comparing the errors (the MAD) made by 
different methods (and/or by different models)  provides an immediate selection criterion. 

depends on:  • complexity 
Finally, the amount of energy to spend for the forecasting process plays also a role too. 

But do not forget the characteristics of forecasts (page 2)  


